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Solar activity near the maximum of each 1 1-year solar cycle causes a number of

adverse effects on space systems. Satellites experience increased electrical charging of their
surface and internal dielectric components, resulting in disruptive electrostatic discharges, and
micro-electronic devices experience upsets more often. Satellite communications links in the very
high frequency (VHF)/ultra high frequency (UHF) range suffer signal fades more often and with

greater severity. The increased atmospheric density increases the drag on satellites at low
altitudes, causing difficulties in tracking and in predicting their orbit decay and time of reentry.
Because these effects are related to solar activity, it is important to predict both the amplitude of

the solar cycle, measured by the maximum smoothed sunspot number, and the month in which the
maximum is expected to occur. Solar cycles vary considerably in both the maximum sunspot

number reached and the time after sunspot minimum that the maximum occurs.

Withbroe [1989] has recently reviewed solar cycle predictions for cycle 22. He notes

that existing techniques can be divided into three broad categories--statistical, precursor, and

McNish-Lincoln. Statistical techniques analyze the historical record for periodicities and trends.
Precursor techniques conelate some parameters from the previous cycle or previous solar

minimum with the sunspot number at the following maximum. Precursor techniques may use

ad hoc relationships or may be founded on physical principles. An example of the latter is the
prediction technique of Schatten et al. [1978] and Schatten and Sofia [1987], which shows that the
sun's polar field strength near solar minimum is related to the following cycle's solar activity. The
McNish-Lincoln technique is a "self-correcting" technique that relates the sunspot number N

months after sunspot minimum to the mean for that month from preceding cycles and a correction

term related to the departure of the current cycle from this mean [McNish and Lincoln, 1949].

We have taken a novel approach to making a sunspot prediction using a precursor

technique. We have used BrainMaker, neural network simulation software from California
Scientific Software, to predict the maximum 13-month-smoothed sunspot number for cycle 22 and

the month in which this maximum will occur. The network software was run on a COMPAQ
Deskpro 386 computer with a clock speed of 16 MHz. Neural networks can be trained to

recognize complex patterns by association. In this application, the neural network is trained to
recognize a pattern in the onset of a new sunspot cycle that can be used to predict the maximum

sunspot number that will be reached and the number of months from the minimum to the

maximum. Training times ranged from 15 to 30 min for each case.

The neural network used for this application consists of three layers of neurons, as

shown in Fig. 1. Thec are 33 neurons (numbered 0 to 32) in the first layer connected to the input.
The input consists of 33 months of 3-month-smoothed sunspot numbers. Month 1 is taken to be
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Fig. 1. The Architecture of the Neural Network Used to Predict the maximum Sunspot Number for
Solar Cycle 22
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the month of the minimum of the 13-month-smoothed sunspot numbers preceding a cycle. There
are 17 hidden neurons in the second layer, and there are two neurons in the third layer connected
to the output. The first output is the maximum 13-month-smoothed sunspot number for the cycle,
and the second output is the number of months from sunspot minimum to sunspot maximum for

the cycle.

There are only connections between a neuron and neurons in the previous layer.
Neurons in a given layer do not connect to each other and do not take inputs from subsequent
layers or from layers before the previous one. So layer 1 sends outputs to layer 2, and layer 2
takes inputs from layer I and sends outputs to layer 3.

The connection strengths between any two layers constitute the elements of a real-
valued matrix W. Wij is the weight from neuron i (in some layer) to neuron j (in the next higher
layer). The weights are the values that are modified by training.

The neural network uses a back propagation algorithm. Back propagation is a

supervised learning scheme by which a layered feedforward network is trained to become a
pattern matching engine. Training is accomplished by using a set of input/output pairs. The
inputs consist of 33 known values and the outputs of 2 known values. In our application, data
from previous sunspot cycles were used for training. Training uses a minimization algorithm, in
this case, the method of steepest descent, to minimize the error between the output from the

network and the known output values. Training consists of running patterns through the network
in the forward direction, i.e., from input to output, then propagating errors backwards, and

updating the weights according to the equation

ApWij = - 8pjOpi

where p is an index identifying the member of the training set, ApWij is the change in weight Wij
on training pattern p, E is a constant known as the "learning rate," and Bpi is given by

Bpi = - (8EpjdOpj) TF(Apj)

The error is F-pj, and TF'(Apj) is the slope of the transfer function that relates the output, Opj, of a
neuron to its activation value, Apj. The transfer function used in this application is known as a

sigmoid function. It can be shown that

8pj = TF(Apj) tEk 6 Wj

where jk refers to a weight between the hidden layer and the output layer. This then relates ApWij
to Wjk and effects the backward propagation. Training is stopped when the errors for all of the
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output values are within specified bounds. This is normally taken to be within 10 % of their

range. The range is scaled from the real world range to the range from 0 to 1.

For each training session, the network was started with completely random
interconnections. The network was trained using data from cycle 7, which began in 1823, through
cycle 21, which began in 1976. Data from cycles earlier than 7 were not used because of
uncertainties in their accuracy. The triangles in Fig. 2 show the accuracy of the training achieved
for the 15 cycles in the training set. If the neural network was perfectly trained, the points would
fall on the straight line shown in the figure. On that line, the output of the neural network would
equal the actual sunspot maximum observed.

The network operates in the range from 0 to I for all parameters. Real-world values
must be scaled into this range. Sunspot numbers were scaled from the range 40 to 210 into the
range 0 to 1, and the months were scaled from the range 30 to 80 into 0 to 1. In order to obtain
convergence, the training criterion was set to 10% of the range, which corresponds to ±17 for the
maximum sunspot number and ±5 months for the time to maximum. That means that the network
was successfully trained only after it could output a sunspot maximum that was within ±17 of the
actual sunspot maximum for each of the 15 cycles from cycle 7 through cycle 21.

The network was tested by removing one cycle at a time from the training set,
retraining the network, and predicting the output parameters for the missing cycle. Thus 15 tests
were conducted, one for each cycle from 7 through 21. The results of these tests are plotted as
circles in Fig. 2. The standard deviation of the predictions of the sunspot maximum from the
actual maximum for cycles 7 through 21 is 26.4. Generally the predictions fall outside of the
values associated with the full training set, as expected. Note that the amplitude of cycle number
19, with the largest sunspot maximum, 201, is predicted no worse than the value associated with
that cycle for the entire training set. The neural network is thus able to predict values that are
larger than the values used in the training sets. However, it cannot predict values outside of its
scaled range from 0 to 1.

Using all of the cycles from cycle 7 through cycle 21 to train the neural network and
using the 3-month-smoothed data for the first 33 months of cycle 22 as input data, the neural
network predicts the maximum sunspot number for cycle 22 to be 194 ±26 to occur 42 months
(March 1990) after the minimum. The uncertainty in the prediction is taken to be the standard
deviation of the difference between the predicted sunspot maximum and the observed sunspot
maximum for the 15 test cases. This prediction is to be compared with the predictions for solar
cycle 22 given in Table 2 of Withbroe [1989]. There the average value of the sunspot maximum
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Fig. 2. A Scatter Diagram Showing the Predicted Sunspot Maximum vs the Actual Sunspot
Maximum for the Solar Cycles from 7 Through 21. The triangles include the entire training
set used to predict the sunspot maximum for cycle 22. The circles show the prediction for a
cycle when that cycle is removed from the training set.
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for the statistical techniques is 94; for the precursor techniques, 114; and for the McNish-Lincoln

technique, 191.

The amplitude of cycle 22 was also predicted for each of the 15 test cases with one

cycle removed. This should give an inferior answer. However the spread in the predictions

should reflect the uncertainty in the predictions. The prediction using the full training set is

centered at the cross in Fig. 3. The error bars shown are the standard deviation of the predictions

from the actual values for the 15 test cases. The 15 predictions made with one cycle removed

from the training set are plotted as triangles in Fig. 3. They range from 182.3 to 195.9 in

amplitude with an average of 188.3 and from 37.6 to 48.3 months with an average of 41.0. In

order to put the prediction into perspective with cycle 22, the actual values of the 13-month-

smoothed sunspot numbers for cycle 22 are plotted as squares in Fig. 3. The solid squares show

the data available at the time the neural network prediction was made. The open squares show the

more recent data.
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Fig. 3. The Prediction of the Maximum 13-Month-Smoothed Sunspot Number for Solar Cycle 22.

The triangles show the predictions obtained as each cycle is individually removed from the
training set. The squares show the actual values observed for cycle 22. The solid squares
show the data available at the time the neural network prediction was made.

11



REFERENCES

McNish, A. G., and J. V. Lincoln, "Predictions of Sunspot Numbers," EOS. Trans. Am. Geophvs. Union
3, 673 (1949).

Schatten, K. H., P. H. Scherrer, L. Svalgaard, and J. M. Wilcox, "Using Dynamo Theory to Predict the
Sunspot Number During Solar Cycle 21," Geophys. Res. Lett. 5, 411 (1978).

Schatten, K. H., and S. Sofia, "Forecast of an Exceptionally Large Even-numbered Solar Cycle,"
Geophys. Res. Lett. 14, 632 (1987).

Withbroe, G. L., "Solar Activity Cycle: History and Predictions," J. Spacecraft and Rockets 2&, 394
(1989).

13



LABORATORY OPERATIONS

The Aerospace Corporation functions as an "architect-engineer" for national security
projects, specializing in advanced military space systems. Providing research support, the
corporation's Laboratory Operations conducts experimental and theoretical investigations that
focus on the application of scientific and technical advances to such systems. Vital to the success
of these investigations is the technical staffs wide-ranging expertise and its ability to stay current
with new developments. This expertise is enhanced by a research program aimed at dealing with
the many problems associated with rapidly evolving space systems. Contributing their capabilities
to the research effort are these individual laboratories:

Aerophysics Laboratory: Launch vehicle and reentry fluid mechanics, heat transfer
and flight dynamics; chemical and electric propulsion, propellant chemistry, chemical
dyr.amics, environmental chemistry, trace detection; spacecraft structural mechanics,
contamination, thermal and structural control; high temperature thermomechanics, gas
kinetics and radiation; cw and pulsed chemical and excimer laser development,
including chemical kinetics, spectroscopy, optical resonators, beam contri, atmos-
pheric propagation, laser effects and countermeasures.

Chemistry and Physics Laboratory: Atmospheric chemical reactions, atmospheric
optics, light scattering, state-specific chemical reactions and radiative signatures of
missile plumes, sensor out-of-field-of-view rejection, applied laser spectroscopy, laser
chemistry, laser optoelectronics, solar cell physics, battery electrochemistry, space
vacuum and radiation effects on materials, lubrication and surface phenomena,
thermionic emission, photosensitive materials and detectors, atomic frequency stand-
ards, and environmental chemistry.

Electronics Research Laboratory: Microelectroncs, solid-state device physics,
compound semiconductors, radiation hardening; electro-optics, quantum electronics,
solid-state lasers, optical propagation and communications; microwave semiconductor
devices, microwave/millimeter wave measurements, diagnostics and radiometry, micro-
wave/millimeter wave thermionic devices; atomic time and frequency standards;
antennas, rf systems, electromagnetic propagation phenomena, space communication
systems.

Materials Sciences Laboratory: Development of new materials: metals, alloys,
ceramics, polymers and their composites, and new forms of carbon; nondestructive
evaluation, component failure analysis and reliability; fracture mechanics and stress
corrosion; analysis and evaluation of materials at cryogenic and elevated temperatures
a well as in space and enemy-induced environments.

Space Sciences Laboratory: Magnetospheric, auroral and cosmic ray physics,
wave-particle interactions, magnetospheric plasma waves; atmospheric and ionospheric
physics, density and composition of the upper atmosphere, remote sensing using
atmospheric radiation; solar physics, infrared astronomy, infrared signature analysis;
effects of solar activity, magnetic storms and nuclear explosions on the earth's
atmosphere, ionosphere and magnetosphere; effects of electromagnetic and particulate
radiations on space systems; space instrumentation.


